Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 20
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Antioxidants (Basel) ; 13(4)2024 Apr 21.
Artigo em Inglês | MEDLINE | ID: mdl-38671942

RESUMO

Litchi pericarp is rich in polyphenols, and demonstrates significant biological activity. This study assessed the therapeutic effects of litchi pericarp extract (LPE) on type 2 diabetes mellitus in db/db mice. The results showed that LPE ameliorated symptoms of glucose metabolism disorder, oxidative stress, inflammatory response, and insulin resistance in db/db mice. The mechanistic studies indicated that LPE activates adenosine 5'-monophosphate (AMP)-activated protein kinase (AMPK) and suppresses the protein expression of phosphoenolpyruvate carboxykinase (PEPCK), thereby reducing hepatic gluconeogenesis. Additionally, LPE facilitates the translocation of nuclear factor erythroid2-related factor 2 (Nrf2) into the cell nucleus, initiating the transcription of antioxidant factors superoxide dismutase (SOD) and NAD(P)H: quinone oxidoreductase 1 (NQO1), which alleviate oxidative stress and reduce oxidative damage. Furthermore, LPE blocks nuclear factor kappa-B (NF-κB) nuclear translocation and subsequent inflammatory response initiation, thereby reducing inflammation. These findings indicate that LPE addresses type 2 diabetes mellitus by activating the AMPK energy metabolic pathway and regulating the Nrf2 oxidative stress and NF-κB inflammatory signaling pathways.

2.
Int J Biol Macromol ; 258(Pt 1): 128933, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38143071

RESUMO

In this study, zein-gallic acid covalent complex prepared by alkali treatment was utilized as an emulsifier to stabilize cinnamon essential oil (CEO) Pickering emulsion, and the chitosan-based (CZGE) films loaded with CEO Pickering emulsion were prepared by blending. The influences of different contents of CEO Pickering emulsion on the physical properties and biological activities of CZGE films were investigated. The results showed that Pickering emulsion had good compatibility with chitosan matrix and enhanced the interaction between film-forming matrix polymer. In addition, incorporating with CEO Pickering emulsion (15 %, v/v) significantly improved the mechanical and barrier properties of the films, and also enhanced the light transmittance and thermal stability of the films. Furthermore, the loading of emulsion also improved the antioxidant activities of the films and led to the formation of high antimicrobial property against food pathogens, and the slow-release behavior of CEO could effectively extend the biological activity of the films. These results suggested that Pickering emulsion has potential as a loading system and a plasticizer in active packaging, and the feasibility of CZGE film in food packaging.


Assuntos
Quitosana , Nanopartículas , Óleos Voláteis , Zeína , Cinnamomum zeylanicum , Ácido Gálico , Emulsões , Antibacterianos
3.
Antioxidants (Basel) ; 12(10)2023 Oct 12.
Artigo em Inglês | MEDLINE | ID: mdl-37891927

RESUMO

The present study investigated the impact of saponins of tomato extract (STE) on non-alcoholic fatty liver disease (NAFLD). The findings demonstrated that introducing STE in NAFLD mice revealed promising results in ameliorating symptoms of oxidative stress, lipid metabolism disorders, visceral fat deposition and fatty liver disease. Moreover, the mechanistic studies have demonstrated that STE delivers its effects by activating adenosine 5'-monophosphate (AMP)-activated protein kinase (AMPK), thereby suppressing downstream protein expression associated with fatty acid synthesis. In such conditions, lipid metabolism can be improved. Simultaneously, STE enhanced nuclear factor erythroid 2-related factor 2 (Nrf2) and entry into the nucleus and initiated the transcription of downstream antioxidant factors, thereby relieving oxidative stress induced by a high-fat diet and lowering oxidative damage to the liver. Such results imply that the administration of STE can be regarded as a viable treatment option for NAFLD, providing a mechanism that can regulate the AMPK and Nrf2 signaling pathways.

4.
Int J Biol Macromol ; 235: 123914, 2023 Apr 30.
Artigo em Inglês | MEDLINE | ID: mdl-36870659

RESUMO

In this study, amphiphilic chitosan (NPCS-CA) was synthesized by grafting quaternary phosphonium salt and cholic acid onto the chain of chitosan, aiming to develop an active edible film based on NPCS-CA and polyvinyl alcohol (PVA) incorporated with cinnamon essential oil (CEO) by the casting method. The chemical structure of the chitosan derivative was characterized by FT-IR, 1H NMR and XRD. Through the characterization of FT-IR, TGA, mechanical and barrier properties of the composite films, the optimal proportion of NPCS-CA/PVA was determined as 5/5. And, the tensile strength and elongation at break of the NPCS-CA/PVA (5/5) film with 0.4 % CEO were 20.32 MPa and 65.73 %, respectively. The results revealed that the NPCS-CA/PVA-CEO composite films exhibited an excellent ultraviolet barrier property at 200-300 nm and significantly reduced oxygen permeability, carbon dioxide permeability and water vapor permeability. Furthermore, the antibacterial property of film-forming solutions against E. coli, S. aureus, and C. lagenarium was distinctly improved with the increase of NPCS-CA/PVA proportion. And, the multifunctional films effectively extended the shelf-life of mangoes at 25 °C based on the characterization of surface changes and quality indexes. The NPCS-CA/PVA-CEO films could be developed as biocomposite food packaging material.


Assuntos
Quitosana , Óleos Voláteis , Óleos Voláteis/química , Quitosana/química , Álcool de Polivinil/química , Cinnamomum zeylanicum/química , Espectroscopia de Infravermelho com Transformada de Fourier , Staphylococcus aureus , Escherichia coli , Antibacterianos/farmacologia , Antibacterianos/química , Embalagem de Alimentos/métodos
5.
Carbohydr Polym ; 300: 120290, 2023 Jan 15.
Artigo em Inglês | MEDLINE | ID: mdl-36372497

RESUMO

In this paper, amphiphilic chitosan and carboxymethyl modified gellan gum were synthesized to develop an active edible fresh-keeping material. The optimal weight ratio of CMCS-g-CA/CMGG was determined as 5:2 through the characterization of Fourier transform infrared (FT-IR), Thermogravimetric analysis (TGA), mechanical and barrier properties of the composite films. In addition, the water vapor permeability and oxygen permeability of CMCS-g-CA/CMGG composite films incorporated with mustard essential oil were all declined, and the antibacterial property of the composite film solutions against E. coli, S. aureus and Bacillus anthracis was distinctly improved with the increase of mustard essential oil (MEO) dosage. Furthermore, the CMCS-g-CA/CMGG + 2.0 µL/mL MEO composite film exhibited an effective preservation on mango fruits during 20 days of storage based on the characterization of surface appearance and quality indexes of fruits. Hence, the multifunctional CMCA-g-CA/CMGG/MEO composite films can be served as a prospective eco-friendly packaging material for fruit preservation.


Assuntos
Quitosana , Mangifera , Óleos Voláteis , Óleos Voláteis/farmacologia , Staphylococcus aureus , Escherichia coli , Espectroscopia de Infravermelho com Transformada de Fourier , Mostardeira , Estudos Prospectivos , Antibacterianos/farmacologia , Permeabilidade , Embalagem de Alimentos
6.
Int J Biol Macromol ; 224: 1361-1372, 2023 Jan 01.
Artigo em Inglês | MEDLINE | ID: mdl-36306905

RESUMO

Quercetin (QCT) has antioxidant, anti-inflammatory, anti-tumor and other important pharmacological activities, but the poor water solubility limits its application. In this work, the amphiphilic dextran (ADEX) was prepared by grafting L-cysteine and octadecylamine onto carboxymethyl dextran with the grafting rate of 21.29 % and 19.35 %. Then, the QCT-loaded nanomicelles (QNMs) were prepared by using ADEX as wall material and the QCT as core material via ultrasonic self-assembly method. The particle size and zeta potential of QNMs were 372 nm and 31.4 mV. Under simulated gastric and simulated intestinal fluids, the cumulative release QNMs were 37.54 % and 52.13 % within 180 min, and the QNMs showed better stability in simulated gastric fluid. The QNMs showed significantly better PTIO, OH and O2- scavenging activities than QCT. In addition, QNMs could effectively down-regulate the expression of pro-inflammatory cytokines and promoted the expression of anti-inflammatory cytokine. The cellular uptake results proved that the QNMs were more easily absorbed by cells than free QCT, indicating that the nano-encapsulation procedure effectively improved the uptake efficiency of QCT by cells.


Assuntos
Antioxidantes , Nanopartículas , Quercetina/farmacologia , Portadores de Fármacos , Micelas , Dextranos
7.
Foods ; 11(23)2022 Nov 28.
Artigo em Inglês | MEDLINE | ID: mdl-36496645

RESUMO

Litchi pericarp is the main byproduct of litchi processing and contains several polyphenols. However, the chemical constituents and the antioxidant effect in litchi pericarp extracts (LPE) have been rarely studied. The result of the quantitative analyses of the major monomers in LPE indicated that procyanidin A2, procyanidin B2, epicatechin, rutin, and catechin were the major polyphenol compounds of LPE. The LPE exhibited high radical scavenging activity, as indicated by the results of the 1,1-diphenyl-2-picrylhydrazyl (DPPH) and ascorbic acid, 2,2'-Azinobis-3-ethylbenzothiazoline-6-sulfonic acid (ABTS) tests. Moreover, administrating D-galactose in mice led to the reduced activity of antioxidant enzymes, aggravated lipid peroxidation, and induced protein oxidation. The results were improved in the aging mice after the LPE treatment was performed. The above results suggest that LPE has an excellent antioxidant effect. Accordingly, litchi pericarp can serve as a promising source of dietary antioxidants.

8.
Int J Biol Macromol ; 212: 11-19, 2022 Jul 01.
Artigo em Inglês | MEDLINE | ID: mdl-35598563

RESUMO

In this paper, a cationic photoinitiator (TAS) was used as a catalyst for the ring opening reaction of carboxymethyl chitosan (CMCS) and epoxidized soybean oil (ESO) under UV light to prepare CMCS-g-ESO conjugate, and the structure of the product was characterized by FT-IR, 1H NMR and GPC. Then, the spinosad-loaded microcapsules (SSD@CMCS-g-ESO) were prepared by ultrasonic self-assembly method. The results showed that TAS could catalyze the ring opening reaction of CMCS and ESO under UV-irradiation and the optimum reaction time was 1 h, with the molecular weight of 15,745. The average particle size of SSD@CMCS-g-ESO was about 2.16 µm, and the encapsulation efficiency (EE) and drug loading content (LC) of SSD@CMCS-g-ESO were 85.39 ± 2.05% and 20.17 ± 1.84%, respectively. In vitro release revealed that SSD@CMCS-g-ESO exhibited sustained-release and pH-responsive property, and the accumulative release in the buffer solution of pH = 6.5 and 7.4 was higher than in pH = 9.0. Furthermore, SSD@CMCS-g-ESO had a good antifungal properties against Fusarium oxysporum f. sp. cubense (Foc) compared with the unencapsulated SSD at the same drug dose. This work indicated that photo-chemical reactions could be used to prepare bio-based carrier materials to construct drugs delivery system for targeted treatment of fusarium wilt.


Assuntos
Quitosana , Fusarium , Quitosana/química , Portadores de Fármacos/química , Óleo de Soja , Espectroscopia de Infravermelho com Transformada de Fourier , Raios Ultravioleta
9.
Colloids Surf B Biointerfaces ; 202: 111693, 2021 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-33774518

RESUMO

To increase the solubility and the encapsulation of zinc phthalocyanine (ZnPc) photosensitizer for photodynamic therapy (PDT), a positively charged amphiphilic phosphonium chitosan nanomicelle with multi-benzene structure was developed, and its application to PDT was explored. N-acetyl-l-phenylalanine-(4-carboxybutyl) triphenylphosphonium bromide chitosan (CTPB-CS-NAP), a chitosan derivative with tunable amphiphilicity, was synthesized first. ZnPc was encapsulated in CTPB-CS-NAP at the critical micelle concentration (CMC) of 4.898 mg/L by a hydrophobic self-assembly method to form ZnPc-loaded nanomicelles (ZnPc@CTPB-CS-NAP). The method gives the highest encapsulation efficiency and drug loading of 89.4 % and 22.3 %, respectively. ZnPc@CTPB-CS-NAP is stably dispersed in aqueous solution and shows the average particle size of 103±5 nm. PDT experiments suggest the phototoxicity of ZnPc@CTPB-CS-NAP is much higher than that of ZnPc, but no obvious dark cytotoxicity is observed. Our study has provided a new strategy for improving the photodynamic therapy efficacy of hydrophobic photosensitizer by the encapsulation with chitosan derivative carriers.


Assuntos
Quitosana , Compostos Organometálicos , Fotoquimioterapia , Linhagem Celular Tumoral , Indóis , Isoindóis , Compostos Organometálicos/farmacologia , Fármacos Fotossensibilizantes/farmacologia , Compostos de Zinco
10.
Int J Biol Macromol ; 167: 46-58, 2021 Jan 15.
Artigo em Inglês | MEDLINE | ID: mdl-33271181

RESUMO

A novel pH/glutathione (GSH) multi-responsive chitosan nanoparticles (NPs) material has been successfully designed and prepared by a self-assembly/self-crosslinking method for photodynamic therapy (PDT), which overcomes the shortcomings of traditional photosensitizer carriers, such as poor chemical stability, low loading efficiency and single-responsive photosensitizer release. Amphiphilic sulfhydryl chitosan (SA-CS-NAC) is first prepared by modifying chitosan (CS) with stearic acid (SA) and N-acetyl-L-cysteine (NAC), and then subject to self-assembly and self-crosslinking in the presence of photosensitizer, indocyanine green (ICG), to form the ICG-loaded amphiphilic sulfhydryl chitosan nanoparticles (SA-CS-NAC@ICG NPs). The ICG entrapment efficiency and loading efficiency of the NPs are found to be 95.2% and 27.6%, respectively. The multi-responsive ICG release of the NPs to the low pH and high GSH content of the microenvironment in tumor cells is successfully achieved. Under the laser irradiation, the SA-CS-NAC@ICG NPs produce the amount of reactive oxygen species (ROS) twice of that generated by free ICG under the same conditions. The in vitro cell experiment confirmed the strong cellular uptake ability, low biotoxicity and good tumor inhibition of the NPs. Our work has provided a new strategy for the targeted photosensitizer delivery for PDT.


Assuntos
Quitosana/química , Glutationa/química , Concentração de Íons de Hidrogênio , Nanopartículas/química , Fármacos Fotossensibilizantes/química , Animais , Apoptose/efeitos dos fármacos , Linhagem Celular Tumoral , Sobrevivência Celular/efeitos dos fármacos , Técnicas de Química Sintética , Reagentes de Ligações Cruzadas , Modelos Animais de Doenças , Estabilidade de Medicamentos , Humanos , Espectroscopia de Ressonância Magnética , Camundongos , Micelas , Peso Molecular , Nanopartículas/ultraestrutura , Fotoquimioterapia , Espécies Reativas de Oxigênio/metabolismo , Espectroscopia de Infravermelho com Transformada de Fourier , Ensaios Antitumorais Modelo de Xenoenxerto
11.
Int J Biol Macromol ; 163: 156-166, 2020 Nov 15.
Artigo em Inglês | MEDLINE | ID: mdl-32590089

RESUMO

Aiming at high drug loading and controlled drug release in chitosan nanocarriers, this work constructed the photothermal sensitive carboxymethyl chitosan nanospheres carrier by introducing controllable heat-sensitive groups into carboxymethyl chitosan molecules. The combination therapy system based on photothermal-chemotherapy was established by virtue of the good photothermal conversion effect of ICG and the high chemotherapy efficiency of DOX. On the one hand, the carrier owned high drug loading and improved the stability of coated-drug. On the other hand, the nanospheres generated photothermal response through NIR irradiation to improve the drug release amount and to achieve the combined treatment effect of photodynamic therapy and chemotherapy. The structures of the nanospheres were fully characterized by Fourier transform infrared (FT-IR), nuclear magnetic resonance (1H NMR) and scanning electron microscope (SEM). In vitro photothermal tests proved that the nanospheres had excellent light stability and photothermal conversion performance. The cytotoxicity test results showed that the nanospheres had no obvious toxicity, but the drug-loaded nanospheres could effectively inhibit the growth of HepG-2 cells via photo-response to release DOX and ICG for achieving photothermal-chemotherapy under NIR irradiation.


Assuntos
Quitosana/análogos & derivados , Terapia Combinada/métodos , Sistemas de Liberação de Medicamentos/métodos , Nanosferas/química , Resinas Acrílicas/química , Resinas Acrílicas/farmacocinética , Apoptose/efeitos dos fármacos , Sobrevivência Celular/efeitos dos fármacos , Quitosana/química , Quitosana/farmacocinética , Preparações de Ação Retardada , Doxorrubicina/farmacocinética , Composição de Medicamentos/métodos , Liberação Controlada de Fármacos , Células Hep G2 , Humanos , Verde de Indocianina/farmacocinética , Raios Infravermelhos/uso terapêutico , Espectroscopia de Ressonância Magnética , Microscopia Confocal , Microscopia Eletrônica de Varredura , Fotoquimioterapia/métodos , Espécies Reativas de Oxigênio/metabolismo , Espectroscopia de Infravermelho com Transformada de Fourier
12.
Molecules ; 24(14)2019 Jul 16.
Artigo em Inglês | MEDLINE | ID: mdl-31315269

RESUMO

Mussel adhesive proteins (MAPs) have a unique ability to firmly adhere to different surfaces in aqueous environments via the special amino acid, 3,4-dihydroxyphenylalanine (DOPA). The catechol groups in DOPA are a key group for adhesive proteins, which is highly informative for the biomedical domain. By simulating MAPs, medical products can be developed for tissue adhesion, drug delivery, and wound healing. Hydrogel is a common formulation that is highly adaptable to numerous medical applications. Based on a discussion of the adhesion mechanism of MAPs, this paper reviews the formation and adhesion mechanism of catechol-functionalized hydrogels, types of hydrogels and main factors affecting adhesion, and medical applications of hydrogels, and future the development of catechol-functionalized hydrogels.


Assuntos
Bivalves/química , Catecóis/química , Animais , Bivalves/metabolismo , Di-Hidroxifenilalanina/química , Sistemas de Liberação de Medicamentos , Hidrogéis , Proteínas/metabolismo , Aderências Teciduais , Cicatrização
13.
Colloids Surf B Biointerfaces ; 179: 519-526, 2019 Jul 01.
Artigo em Inglês | MEDLINE | ID: mdl-31075678

RESUMO

Quercetin (QCT) has important functions such as antioxidant, anti-inflammatory and anticancer. However, its applications in food and in drug are restricted owing to its poor water solubility. In this work, a novel amphiphilic wall-material chitosan was synthesized via grafting of chitosan with deoxycholic acid (DA) as hydrophobic group and modified N-acetyl-L-cysteine (NAC) as hydrophilic group. Amphiphilic chitosan was self-assembled to load QCT as nanomicelles by a low-cost and inorganic solvent procedure. Both the encapsulation efficiencies (EE) and drug-loading rates (DL) increased when increasing the grafting rate of DA. There was a bursting release of QCT for the QCT-loaded nanomicelles (CS-DA-NAC-QNMs) from 0 to 8 h, and then the release rate decreased gradually. After releasing for 72 h, the final cumulative release percentages were more than 40%. All the QCT-loaded nanomicelles samples showed good hemocompatibility, and their water solubility and biocompatibility increased evidently. What's more, they exhibited an obvious inhibition rate of A549 cells.


Assuntos
Quitosana/química , Sistemas de Liberação de Medicamentos , Micelas , Nanopartículas/química , Quercetina/farmacologia , Tensoativos/química , Células A549 , Animais , Morte Celular/efeitos dos fármacos , Ácido Desoxicólico/química , Liberação Controlada de Fármacos , Humanos , Nanopartículas/ultraestrutura , Tamanho da Partícula , Coelhos , Solubilidade , Eletricidade Estática , Ultrassom
14.
Environ Sci Technol ; 50(8): 4366-73, 2016 Apr 19.
Artigo em Inglês | MEDLINE | ID: mdl-27019098

RESUMO

Microbial methylation and demethylation are two competing processes controlling the net production and bioaccumulation of neurotoxic methylmercury (MeHg) in natural ecosystems. Although mercury (Hg) methylation by anaerobic microorganisms and demethylation by aerobic Hg-resistant bacteria have both been extensively studied, little attention has been given to MeHg degradation by anaerobic bacteria, particularly the iron-reducing bacterium Geobacter bemidjiensis Bem. Here we report, for the first time, that the strain G. bemidjiensis Bem can mediate a suite of Hg transformations, including Hg(II) reduction, Hg(0) oxidation, MeHg production and degradation under anoxic conditions. Results suggest that G. bemidjiensis utilizes a reductive demethylation pathway to degrade MeHg, with elemental Hg(0) as the major reaction product, possibly due to the presence of genes encoding homologues of an organomercurial lyase (MerB) and a mercuric reductase (MerA). In addition, the cells can strongly sorb Hg(II) and MeHg, reduce or oxidize Hg, resulting in both time and concentration-dependent Hg species transformations. Moderate concentrations (10-500 µM) of Hg-binding ligands such as cysteine enhance Hg(II) methylation but inhibit MeHg degradation. These findings indicate a cycle of Hg methylation and demethylation among anaerobic bacteria, thereby influencing net MeHg production in anoxic water and sediments.


Assuntos
Poluentes Ambientais/metabolismo , Geobacter/metabolismo , Mercúrio/metabolismo , Anaerobiose , Biodegradação Ambiental , Cisteína/química , Poluentes Ambientais/química , Ferro/metabolismo , Liases/metabolismo , Mercúrio/química , Metilação , Compostos de Metilmercúrio/metabolismo , Oxirredução , Oxirredutases/metabolismo
15.
Drug Deliv ; 23(1): 30-5, 2016.
Artigo em Inglês | MEDLINE | ID: mdl-24712731

RESUMO

Chitosan as a natural polysaccharide derived from chitin of arthropods like shrimp and crab, attracts much interest due to its inherent properties, especially for application in biomedical materials. Presently, biodegradable and biocompatible chitosan nanoparticles are attractive for drug delivery. However, some physicochemical characteristics of chitosan nanoparticles still need to be further improved in practice. In this work, chitosan nanoparticles were produced by crosslinking chitosan with 3-methoxy-4-hydroxybenzaldehyde (vanillin) through a Schiff reaction. Chitosan nanoparticles were 200-250 nm in diameter with smooth surface and were negatively charged with a zeta potential of - 17.4 mV in neutral solution. Efficient drug loading and drug encapsulation were achieved using 5-fluorouracil as a model of hydrophilic drug. Drug release from the nanoparticles was constant and controllable. The in vitro cytotoxicity against HT-29 cells and cellular uptake of the chitosan nanoparticles were evaluated by methyl thiazolyl tetrazolium method, confocal laser scanning microscope and flow cytometer, respectively. The results indicate that the chitosan nanoparticles crosslinked with vanillin are a promising vehicle for the delivery of anticancer drugs.


Assuntos
Antineoplásicos/administração & dosagem , Antineoplásicos/química , Benzaldeídos/química , Quitosana/química , Nanopartículas/química , Antimetabólitos/administração & dosagem , Antimetabólitos/química , Antimetabólitos/farmacocinética , Reagentes de Ligações Cruzadas , Composição de Medicamentos , Sistemas de Liberação de Medicamentos , Excipientes , Fluoruracila/administração & dosagem , Fluoruracila/química , Fluoruracila/farmacocinética , Células HT29 , Humanos , Tamanho da Partícula
16.
J Microencapsul ; 32(1): 40-5, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-25198909

RESUMO

Folate-chitosan nanoparticles, co-loaded with 5-fluourouacil (5-FU) and leucovorin (LV) and prepared by ionic gelation technology were physically microencapsulated by enteric polymer using a solvent evaporation method. Average particle size of the microencapsulated particles was in the range of 15 to 35 µm. High drug encapsulation efficiency was obtained for both 5-FU and LV in the microencapsulated particles. Both drugs were in amorphous state in the microencapsulated particles. By enteric coating, excellent pH-dependent release profile was achieved and no drug release was observed in simulated gastric and intestinal fluids. However, when the pH value reached the soluble threshold of Eudragit S-100, a constant and slow drug release was observed. The results indicated that these microencapsulated particles are a promising vehicle for selectively targeting drugs to colon in the chemotherapy of colon cancer.


Assuntos
Quitosana , Colo , Neoplasias do Colo/tratamento farmacológico , Portadores de Fármacos , Ácido Fólico , Nanopartículas/química , Cápsulas , Quitosana/química , Quitosana/farmacologia , Portadores de Fármacos/química , Portadores de Fármacos/farmacologia , Ácido Fólico/química , Ácido Fólico/farmacologia , Humanos , Ácidos Polimetacrílicos/química , Ácidos Polimetacrílicos/farmacologia
17.
Molecules ; 19(8): 12676-89, 2014 Aug 20.
Artigo em Inglês | MEDLINE | ID: mdl-25140446

RESUMO

Mogroside IIE is a bitter triterpenoid saponin which is the main component of unripe Luo Han Guo fruit and a precursor of the commercially available sweetener mogroside V. In this study, we developed an enzymatic glycosyl transfer method, by which bitter mogroside IIE could be converted into a sweet triterpenoid saponin mixture. The reactant concentration, temperature, pH and buffer system were studied. New saponins with the α-glucose group were isolated from the resulting mixtures, and the structures of three components of the extract were determined. The structure-taste relationships of these derivatives were also studied together with those of the natural mogrosides. The number and stereoconfiguration of glucose groups present in the mogroside molecules were found to be the main factor to determine the sweet or bitter taste of a compound. The antioxidant and food safety properties were initially evaluated by their radical scavenging ability and via 7 day mice survival tests, respectively. The results showed that the sweet triterpenoid saponin mixture has the same favorable physiological and safety characteristics as the natural mogrosides.


Assuntos
Glicosídeos/química , Saponinas/química , Edulcorantes/química , Triterpenos/química , Animais , Antioxidantes/química , Frutas/química , Glicosídeos/síntese química , Análise de Perigos e Pontos Críticos de Controle , Camundongos , Oxirredução , Relação Estrutura-Atividade , Edulcorantes/administração & dosagem , Paladar , Triterpenos/síntese química
18.
Food Chem ; 145: 272-7, 2014 Feb 15.
Artigo em Inglês | MEDLINE | ID: mdl-24128477

RESUMO

A novel flavour microcapsule containing vanilla oil (VO) was developed using complex coacervation approach, aimed to control release of VO and enhance its thermostability for spice application in food industry. Viscosity of chitosan (CS) and VO/CS ratio were optimised for fabrication of microcapsules. The flavour microcapsules were evaluated by scanning electron micrograph (SEM), laser confocal microscopy (LSCM), particle size analyser, infrared spectrometer (FT-IR), thermal analysis and controlled-release analysis. The microcapsules were in spherical with good dispersibility when moderate viscosity CS was used. 94.2% of encapsulation efficiency was achieved in VO/CS ratio of 2:1. The FT-IR study proved chemical cross-linking reaction occurred between genipin and chitosan, but a physical interaction between CS and VO. A core-shell structure of microcapsule was confirmed by LSCM, which was beneficial to improve the thermostability of VO in microcapsule. Moreover, VO could be remained about 60% in the microcapsules after release for 30 days, which demonstrated the flavour microcapsules had good potential to serve as a high quality food spice with long residual action and high thermostability.


Assuntos
Cápsulas/química , Aromatizantes/química , Manipulação de Alimentos/métodos , Óleos de Plantas/química , Vanilla/química , Quitosana/química , Iridoides/química , Microscopia Confocal , Microscopia Eletrônica de Varredura , Espectroscopia de Infravermelho com Transformada de Fourier
19.
Water Sci Technol ; 63(12): 2923-8, 2011.
Artigo em Inglês | MEDLINE | ID: mdl-22049720

RESUMO

Increased tightening of air regulations is leading more electric utilities to install flue gas desulfurization (FGD) systems. These systems produce brine containing high concentrations of nitrate, nitrite, and selenate which must be removed before discharge. The H2-based membrane biofilm reactor (MBfR) was shown to consistently remove nitrate, nitrite, and selenate at high efficiencies. The maximum selenate removal flux reached 362 mgSe m(-2)d(-1) and was higher than that observed in earlier research, which shows continual improvement of the biofilm for selenate reduction. A low pH of 6.8 inhibited precipitation when treating actual FGD brine, yet did not inhibit removal. SO4(2-) was not removed and therefore did not compete with nitrate, nitrite, and selenate reduction for the available H2.


Assuntos
Biofilmes/crescimento & desenvolvimento , Reatores Biológicos/microbiologia , Membranas Artificiais , Nitratos/isolamento & purificação , Compostos de Selênio/isolamento & purificação , Dióxido de Enxofre/isolamento & purificação , Purificação da Água/métodos , Biodegradação Ambiental , Desenho de Equipamento , Concentração de Íons de Hidrogênio , Modelos Teóricos , Oxirredução , Ácido Selênico , Purificação da Água/instrumentação
20.
Bioresour Technol ; 102(10): 6360-4, 2011 May.
Artigo em Inglês | MEDLINE | ID: mdl-21454073

RESUMO

The H(2)-based membrane biofilm reactor (MBfR) was shown to consistently remove nitrate, nitrite, and selenate at high efficiencies from flue-gas desulfurization brine. Selenate was removed to <50 ppb which is the National Pollutant Discharge Elimination System (NPDES) criteria for the brine to be released into the environment. When selenate was removed to <50 ppb, nitrate and nitrite were still present in the mg/L range which suggests that selenate is able to be secondarily reduced to low levels when nitrate and nitrite serve as the main electron acceptors for bacterial growth. SO(4)(2-) was not removed and therefore did not compete with nitrate and selenate reduction for the available H(2).


Assuntos
Biofilmes , Reatores Biológicos , Gases/química , Hidrogênio/química , Membranas Artificiais , Compostos de Selênio/isolamento & purificação , Enxofre/isolamento & purificação , Limite de Detecção , Ácido Selênico
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA